Proximal regularization for the saddle point gradient dynamics

dc.creatorGoldsztajn, Diego
dc.creatorPaganini, Fernando
dc.date.accessioned2022-04-27T19:19:16Z
dc.date.available2022-04-27T19:19:16Z
dc.date.issued2021
dc.descriptionIncluye bibliografía.es
dc.description.abstractThis paper concerns the solution of a convex optimization problem through the saddle point gradient dynamics. Instead of using the standard Lagrangian as is classical in this method, we consider a regularized Lagrangian obtained through a proximal minimization step.We show that, without assumptions of smoothness or strict convexity in the original problem, the regularized Lagrangian is smooth and leads to globally convergent saddle point dynamics. The method is demonstrated through an application to resource allocation in cloud computing.es
dc.description.sponsorshipANII - FCE_1_2019_1_156666.
dc.format.extent8 p.
dc.identifier.urihttp://hdl.handle.net/20.500.11968/4630
dc.languageenes
dc.subjectCONVEX OPTIMIZATIONes
dc.subjectPROXIMAL METHODes
dc.subjectSADDLE POINT DYNAMICSes
dc.titleProximal regularization for the saddle point gradient dynamicses
dc.typePreprintes
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TAC21.pdf
Size:
307.84 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: