Modelos Generativos para el tratamiento de clases desbalanceadas aplicado a un problema de predicción de caídas severas en el precio del Bitcoin

Loading...
Thumbnail Image
Date
2023
Authors
Noguez Piacentini, Juan Ignacio
Publisher
Universidad ORT Uruguay
DOI
ISSN
ISBN
URI
Abstract
Este desarrollo de tesis es tiene como objetivo demostrar que los Modelos Generativos son una buena alternativa para manejar el problema de clases desbalanceadas, además de tener mejores resultados que otras técnicas de remuestreo en términos de desempeño, particularmente en la predicción de caídas severas en el precio de activos financieros. Este trabajo es una aproximación al análisis de modelos con clases desbalanceadas con Modelos Generativos, como el Variational Autoencoders (VAE) y las Generative Adversarial Networks (GAN). Se estudiaron las ventajas de estos modelos en la generación de imágenes y en la generación de texto (NLP), sin embargo, en menor medida se ha estudiado sobre la aplicación en problemas con datos tradicionales o de negocios. En este trabajo se comparan distintas técnicas para el tratamiento de este problema comparando los Modelos Generativos frente a otras técnicas como, SMOTE, “random oversampling” (ROS) y “undersampling” (RUS), en un problema clásico de predicción de caídas severas del precio del Bitcoin. Los resultados encontrados indican que para los clasificadores estimados sobre muestras generadas por los Modelos Generativos, tienen mejor desempeño que otras muestras usadas como de pruebas de rendimientos (benchmark). Los clasificadores elegidos fueron la Regresión Logística, el Random Forest, el Gradient Boosting Classifier y una red neuronal Perceptrón Multicapa.
En
Thesis note
Desarrollo de Tesis (Master). Universidad ORT Uruguay, Facultad de Ingeniería
Thesis degree name
Master en Ingeniería
69 p. il, grafs.
Notes
Incluye bibliografía y anexos.
Subject
PROYECTOS-MI, REDES NEURONALES, INTELIGENCIA ARTIFICIAL, PROCESAMIENTO DE DATOS, NEGOCIOS, APRENDIZAJE AUTOMÁTICO
Type
Trabajo final de carrera
Access the full text
Citation
Noguez Piacentini, J. I. (2023). Modelos Generativos para el tratamiento de clases desbalanceadas aplicado a un problema de predicción de caídas severas en el precio del Bitcoin (Desarrollo de Tesis). Universidad ORT Uruguay, Facultad de Ingeniería.
Rights license