Browsing by Author "Zaiter Trinidad, Federico"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDistriBot(Universidad ORT Uruguay, 2017) Canabarro Sica, Andrés; Mazza Farinacci, Juan Pablo; Monetti Mosera, Alejandro; Zaiter Trinidad, Federico; Mangarelli Olivera, Eduardo Luis; Garbervetsky, Diego David; Feder Szafir, MarielDistriBot es un sistema de apoyo para la operativa de distribuidoras. Consiste en una aplicación web y otra móvil, con recomendaciones y predicciones basadas en Machine Learning. Facilita tanto la preventa como el reparto de los bienes por parte de la distribuidora y la supervisión del negocio a partir de business intelligence. Para el desarrollo del trabajo se realizaron entrevistas con seis distribuidoras junto con una encuesta masiva a otras setenta, donde se observó un pobre aprovechamiento de sus datos. Más de la mitad de las distribuidoras encuestadas no tenían la preventa tecnificada y más de un tercio no lo hacían con su gestión. Se calculó que el 60% de las pequeñas y medianas empresas del Uruguay están dedicadas a la distribución de bienes, demostrando que es un mercado valioso. Se investigaron y evaluaron diversas tecnologías realizando pruebas de concepto que permitieron facilitar su integración. Se desarrolló una solución que tiene un componente en la nube, una aplicación web y una aplicación móvil para ayudar en la preventa y reparto de mercaderías. También se implementó un componente que realiza predicciones, recomendaciones y detecciones de anomalías basado en Machine Learning, aprovechando las facilidades que provee Microsoft Azure. Para la construcción del sistema, se consideraron los atributos de modificabilidad, usabilidad e interoperabilidad. Para la ejecución del proyecto se utilizaron metodologías de gestión tradicionales así como ágiles, dependiendo de la fase del proyecto. Por otra parte, los algoritmos de aprendizaje automático están completamente funcionales y fueron probados con conjuntos de datos de pruebas reales y adaptados. Como resultado se logró implementar un producto que abarca la gestión de una única distribuidora integrándose con implementaciones propias de los sistemas externos para la facturación, manejo de stock y de clientes de la empresa.
- ItemInvestigación de mercado y aplicación práctica de MLOps(Universidad ORT Uruguay, 2022) Rivero Lamanna, Diego José; Pisani Leal, Mikaela; Visca Zanoni, Ramiro Eugenio; Zaiter Trinidad, FedericoEl siguiente trabajo final presenta una investigación sobre las herramientas líderes del mercado en cuanto a metodología MLOps. Se enfoca en el desarrollo, validación y disponibilidad de un modelo para predecir precios de automóviles utilizando datos reales publicados en una plataforma de venta en línea. La herramienta elegida fue VertexAI de Google y el caso de negocio consistió en organizar el flujo de trabajo y automatizar la totalidad del ciclo de vida de un modelo de aprendizaje automático. Desde VertexAI se accede a los datos a través de la plataforma de venta en línea. Dichos datos se limpian y se transforman en variables de entrada para entrenar el modelo. Se utiliza el componente predefinido de AutoML de VertexAI, desplegándose el modelo si el mismo supera los umbrales mínimos en sus KPI. Como resultado se obtuvo un buen modelo que se puede mantener en el tiempo con poca intervención de un experto. Además se hizo un uso exhaustivo de la herramienta VertexAI, líder en el mercado para MLOps en la nube. Como conclusión, se validó el principio de “data-centric AI” para lograr el desarrollo de un buen modelo. También se validó la herramienta VertexAI para lograr un proyecto de MLOps y se alcanzó el objetivo de implementar un proyecto de aprendizaje automático “end to end”. Por último se plantean dos opciones para extraer valor real del modelo, construyendo herramientas de software que utilizarían al modelo como centro de sus funcionalidades.