2022-04-272022-04-272021http://hdl.handle.net/20.500.11968/4630Incluye bibliografía.This paper concerns the solution of a convex optimization problem through the saddle point gradient dynamics. Instead of using the standard Lagrangian as is classical in this method, we consider a regularized Lagrangian obtained through a proximal minimization step.We show that, without assumptions of smoothness or strict convexity in the original problem, the regularized Lagrangian is smooth and leads to globally convergent saddle point dynamics. The method is demonstrated through an application to resource allocation in cloud computing.8 p.CONVEX OPTIMIZATIONPROXIMAL METHODSADDLE POINT DYNAMICSProximal regularization for the saddle point gradient dynamicsPreprint